191 research outputs found

    On the role of robot configuration in Cartesian stiffness control

    Get PDF
    The stiffness ellipsoid, i.e. the locus of task-space forces obtained corresponding to a deformation of unit norm in different directions, has been extensively used as a powerful representation of robot interaction capabilities. The size and shape of the stiffness ellipsoid at a given end-effector posture are influenced by both joint control parameters and - for redundant manipulators - by the chosen redundancy resolution configuration. As is well known, impedance control techniques ideally provide control parameters which realize any desired shape of the Cartesian stiffness ellipsoid at the end-effector in an arbitrary non-singular configuration, so that arm geometry selection could appear secondary. This definitely contrasts with observations on how humans control their arm stiffness, who in fact appear to predominantly use arm configurations to shape the stiffness ellipsoid. To understand this discrepancy, we provide a more complete analysis of the task-space force/deformation behavior of redundant arms, which explains why arm geometry also plays a fundamental role in interaction capabilities of a torque controlled robot. We show that stiffness control of realistic robot models with bounds on joint torques can't indeed achieve arbitrary stiffness ellipsoids at any given arm configuration. We first introduce the notion of maximum allowable Cartesian force/displacement (“stiffness feasibility”) regions for a compliant robot. We show that different robot configurations modify such regions, and explore the role of different configurations in defining the performance limits of Cartesian stiffness controllers. On these bases, we design a stiffness control method that suitably exploits both joint control parameters and redundancy resolution to achieve desired task-space interaction behavior

    Sampled Data Control of a Compliant Actuated Joint Using On/Off Solenoid Valves

    Get PDF
    This paper proposes a new control system design method for a compliant actuated joint using on/off solenoid valves. Themathematical modelling and the system’s hardware are described in detail. The control design method is presented in ageneral manner so it could be applied for any other similar system. For the present system, the designed controller is implementedvia a digital computer and it is characterised by very good performance and simplicity. The success of the proposedmethod is validated via simulations and experiment

    Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments with Movable Obstacles

    Get PDF
    Legged and wheeled locomotion are two standard methods used by robots to perform navigation. Combining them to create a hybrid legged-wheeled locomotion results in increased speed, agility, and reconfigurability for the robot, allowing it to traverse a multitude of environments. The CENTAURO robot has these advantages, but they are accompanied by a higher-dimensional search space for formulating autonomous economical motion plans, especially in cluttered environments. In this article, we first review our previously presented legged-wheeled footprint reconfiguring global planner. We describe the two incremental prototypes, where the primary goal of the algorithms is to reduce the search space of possible footprints such that plans that expand the robot over the low-lying wide obstacles or narrow into passages can be computed with speed and efficiency. The planner also considers the cost of avoiding obstacles versus negotiating them by expanding over them. The second part of this article presents our new work on local obstacle pushing, which further increases the number of tight scenarios the planner can solve. The goal of the new local push-planner is to place any movable obstacle of unknown mass and inertial properties, obstructing the previously planned trajectory from our global planner, to a location devoid of obstruction. This is done while minimising the distance traveled by the robot, the distance the object is pushed, and its rotation caused by the push. Together, the local and global planners form a major part of the agile reconfigurable navigation suite for the legged-wheeled hybrid CENTAURO robot

    A Preliminary Study on the Use of Haptic Feedback to Assist Users with Impaired Arm Coordination During Mouse Interactions

    Get PDF
    Physical movement impairments caused by central nervous system dysfunction or by muscle spasms generated from other neurological damage or dysfunction can often make it difficult or impossible for affected individuals to interact with computer generated environments using the conventional mouse interfaces. This work investigates the use of a 2 dimensional haptic device as an assistive robotic aid to minimize the effects of the pathological absence of motor control on the upper limb in impaired users while using a mouse interface. The haptic system used in this research is a two degree of freedom (DOF) Pantograph planar device. To detect the intended user motion, the device is equipped with force sensing allowing the monitoring of the user applied loads. Impedance based techniques are used to develop a “clumsy” motion suppression control system. The erratic motion suppression techniques and the experimental system setup are evaluated in two dimensional tracking tasks using a human subject with failure of the gross coordination of the upper limb muscle movements resulting from a disorder called ‘Muscle Ataxia’. The results presented demonstrate the ability of the system to improve the tracking performance of the impaired user while interacting with a simple computer generated 2D space

    Exploring Teleimpedance and Tactile Feedback for Intuitive Control of the Pisa/IIT SoftHand

    Get PDF
    This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis design, the SoftHand is developed based on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. Due to the built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while allowing grasping of objects of various shapes using only a single motor. The DC motor of the hand incorporates a novel teleimpedance control in which the user's postural and stiffness synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer which estimates the interaction forces in contact with the grasped object. Estimated interaction forces are then converted and applied to the upper arm of the user via a custom made pressure cuff. The second interface employs vibrotactile feedback based on surface irregularities and acceleration signals and is used to provide the user with information about the surface properties of the object as well as detection of object slippage while grasping. Grasp robustness and intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that incorporating the aforementioned haptic feedback strategies, together with user-driven compliance of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust hand employing hardware-based synergies might be a good alternative to traditional myoelectric prostheses

    Design of a wearable skin stretch cutaneous device for the upper limb

    Get PDF
    This paper presents a novel cutaneous device capable of providing independent skin stretches at the palmar, dorsal, ulnar, and radial sides of the arm. It consists of a lightweight bracelet with four servo motors. Each motor actuates a cylindrical shaped end-effector that is able to rotate, generating skin stretch stimuli. To understand how to control and wear the device on the forearm to evoke the most effective cutaneous sensations, we carried out perceptual experiments evaluating its absolute and differential thresholds. Finally, we carried out an experiment of haptic navigation to assess the effectiveness of our device as a navigation feedback system to guide a desired rotation and translation of the forearm. Results demonstrate an average rotation and translation error of 1.87○ and 2.84 mm, respectively. Moreover, all the subjects found our device easy to wear and comfortable. Nine out of ten found it effective in transmitting navigation information to the forearm

    Manipulation Framework for Compliant Humanoid COMAN: Application to a Valve Turning Task

    Get PDF
    With the purpose of achieving a desired interaction performance for our compliant humanoid robot (COMAN), in this paper we propose a semi-autonomous control framework and evaluate it experimentally in a valve turning setup. The control structure consists of various modules and interfaces to identify the valve, locate the robot in front of it and perform the manipulation. The manipulation module implements four motion primitives (Reach, Grasp, Rotate and Disengage) and realizes the corresponding desired impedance profile for each phase to accomplish the task. In this direction, to establish a stable and compliant contact between the valve and the robot hands, while being able to generate the sufficient rotational torques depending on the valve's friction, Rotate incorporates a novel dual-arm impedance control technique to plan and realize a task-appropriate impedance profile. Results of the implementation of the proposed control framework are firstly evaluated in simulation studies using Gazebo. Subsequent experimental results highlight the efficiency of the proposed impedance planning and control in generation of the required interaction forces to accomplish the task
    corecore